Menyangkut Persoalan di Matfis II

Ehm, kali ini saya mau mengurusi perkara integral di matfis 2.

Carilah :

\[\int {\sqrt {{a^2} + {x^2}} dx} \]

Nampaknya mudah, iya gak sih? Tapi ternyata cukup sulit juga. Yuk cuss aja kita mengenai langkah pemecahannya.


Langkah Pertama

Keluarkan a:


(1.)\[\int {\sqrt {{a^2} + {x^2}} dx} = a\int {\sqrt {1 + \frac{{{x^2}}}{{{a^2}}}} } dx\]

Asumsikan \(\tan \theta = \frac{x}{a}\) sehingga \(dx = a \cdot {\sec ^2}\theta \;d\theta \). Hal tersebut mengimplikasi:


(2.)\[\int {\sqrt {{a^2} + {x^2}} dx} = {a^2}\int {{{\sec }^2}\theta \cdot \sqrt {1 + {{\tan }^2}\theta } } d\theta = {a^2}\int {{{\sec }^3}\theta \;} d\theta .\]

Mencari Formula Integral dari Sec n dan \(n > 1\)

(3.)\[\int {{{\sec }^n}\theta d\theta } = \int {{{\sec }^{n - 2}}\theta \cdot {{\sec }^2}\theta \;d\theta } \]

Kembali mengingat mengenai rumus \(\int {UdV} = UV - \int {VdU} \) dan mengasumsikan \(a = \sec \theta \) sehingga

(4.)\[\frac{{d\left( {{{\sec }^{n - 2}}\theta } \right)}}{{d\theta }} = \frac{{d\left( {{a^{n - 2}}} \right)}}{{da}} \cdot \frac{{da}}{{d\theta }} = \left( {n - 2} \right){\sec ^{n - 3}}\theta \left( {\sec \theta \tan \theta } \right)d\theta \]

kemudian perumusan (3.) menjadi:

(5.)\[\int {{{\sec }^n}\theta d\theta } = {\sec ^{n - 2}}\theta \cdot \tan \theta - \int {\tan \theta \left( {n - 2} \right){{\sec }^{n - 3}}\theta \left( {\sec \theta \tan \theta } \right)d\theta } \] (6.)\[\int {{{\sec }^n}\theta d\theta } = {\sec ^{n - 2}}\theta \cdot \tan \theta - \left( {n - 2} \right)\int {{{\sec }^{n - 3}}\theta } \left( {\sec \theta {{\tan }^2}\theta } \right)d\theta \] (7.)\[\int {{{\sec }^n}\theta d\theta } = {\sec ^{n - 2}}\theta \cdot \tan \theta - \left( {n - 2} \right)\int {{{\sec }^{n - 3}}\theta } \left[ {\sec \theta \left( {{{\sec }^2}\theta - 1} \right)} \right]d\theta \] (8.)\[\int {{{\sec }^n}\theta d\theta } = {\sec ^{n - 2}}\theta \cdot \tan \theta - \left( {n - 2} \right)\int {{{\sec }^n}\theta } d\theta + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}\theta d\theta } \]

Membalik \(\left( {n - 2} \right)\int {{{\sec }^n}\theta } d\theta \) ke sebelah kiri tanda "sama dengan" (=)....

(9.)\[\left( {n - 1} \right)\int {{{\sec }^n}\theta } d\theta = {\sec ^{n - 2}}\theta \cdot \tan \theta + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}\theta d\theta } \]

Sehingga perumusan akhirnya adalah:

(10.)\[\int {{{\sec }^n}\theta } d\theta = \frac{{{{\sec }^{n - 2}}\theta \cdot \tan \theta }}{{\left( {n - 1} \right)}} + \frac{{\left( {n - 2} \right)}}{{\left( {n - 1} \right)}} \cdot \int {{{\sec }^{n - 2}}\theta d\theta } .\]

Rumus (10.) tidak aplikabel untuk sec(x).

Langkah Kedua: Mengaplikasikan Persamaan Sepuluh Ke Dalam Kasus

(11.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{2} \cdot \int {\sec \theta d\theta } } \right]\] (12.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{2} \cdot \int {\frac{{\cos \theta }}{{{{\cos }^2}\theta }}d\theta } } \right]\] (13.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{2} \cdot \int {\frac{{\cos \theta }}{{\left( {1 - {{\sin }^2}\theta } \right)}}d\theta } } \right]\]

Mengandaikan \(u = \sin \theta \).

(14.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{2} \cdot \int {\frac{1}{{\left( {1 - {u^2}} \right)}}du} } \right]\] (15.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{2} \cdot \int {\frac{1}{{\left( {1 - u} \right)\left( {1 + u} \right)}}du} } \right]\]

Menyadari bahwa \(1 = \tfrac{1}{2}\left( {1 - u} \right) + \tfrac{1}{2}\left( {1 + u} \right)\)

(16.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{4} \cdot \int {\frac{1}{{\left( {1 + u} \right)}}du} + \frac{1}{4} \cdot \int {\frac{1}{{\left( {1 - u} \right)}}du} } \right]\]

Mengandaikan bahwa \(b = 1 + u\) dan \(c = 1 - u\) sehingga \(db = du\) dan \(dc = - du\).

(17.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{4} \cdot \int {\frac{1}{b}db} - \frac{1}{4} \cdot \int {\frac{1}{c}dc} } \right]\] (18.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{4}\ln \left( b \right) - \frac{1}{4}\ln \left( c \right)} \right]\] (19.)\[{a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{4}\ln \left( {\frac{{1 + u}}{{1 - u}}} \right)} \right] = {a^2}\left[ {\frac{{\sec \theta \cdot \tan \theta }}{2} + \frac{1}{4}\ln \left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} \right]\]

HASIL AKHIR

Mengembalikan θ ke bentuk x dan a menggunakan \(\tan \theta = \frac{x}{a}\) dan persamaan phytagoras....

(20.)\[\int {\sqrt {{a^2} + {x^2}} dx} = {a^2}\int {{{\sec }^3}\theta \;} d\theta = {a^2}\left[ {\frac{{x\sqrt {{a^2} + {x^2}} }}{{2{a^2}}} + \frac{1}{4}\ln \left( {\frac{{\sqrt {{a^2} + {x^2}} + x}}{{\sqrt {{a^2} + {x^2}} - x}}} \right)} \right]\]

Komentar

Posting Komentar

Postingan populer dari blog ini

Determinan Matriks n x n

Fungsi Error

Swanilai (Eigenvalue) dan Pengenalan Wajah